Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages
نویسندگان
چکیده
Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state.
منابع مشابه
Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation.
Remodeling of the tricarboxylic acid (TCA) cycle is a metabolic adaptation accompanying inflammatory macrophage activation. During this process, endogenous metabolites can adopt regulatory roles that govern specific aspects of inflammatory response, as recently shown for succinate, which regulates the pro-inflammatory IL-1β-HIF-1α axis. Itaconate is one of the most highly induced metabolites in...
متن کاملA Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation
Metabolism in immune cells is no longer thought of as merely a process for adenosine triphosphate (ATP) production, biosynthesis, and catabolism. The reprogramming of metabolic pathways upon activation is also for the production of metabolites that can act as immune signaling molecules. Activated dendritic cells (DCs) and macrophages have an altered Krebs cycle, one consequence of which is the ...
متن کاملRegulation of succinate-fuelled mitochondrial respiration in liver and skeletal muscle of hibernating thirteen-lined ground squirrels.
Hibernating ground squirrels (Ictidomys tridecemlineatus) alternate between two distinct metabolic states throughout winter: torpor, during which metabolic rate (MR) and body temperature (Tb) are considerably suppressed, and interbout euthermia (IBE), during which MR and Tb briefly return to euthermic levels. Previous studies showed suppression of succinate-fuelled respiration during torpor in ...
متن کاملInhibition of mitochondrial function in isolated rate liver mitochondria by azole antifungals.
Ketoconazole is an imidazole oral antifungal agent with a broad spectrum of activity. Ketoconazole has been reported to cause liver damage, but the mechanism is unknown. However, ketoconazole and a related rug, miconazole, have been shown to have inhibitory effects on oxidative phosphorylation in fungi. Fluconazole, another orally administered antifungal azole, has also been reported to cause l...
متن کاملActivation and inhibition of succinate oxidation following adenosine diphosphate supplements to pigeon heart mitochondria.
The initiation of electron transfer by addition of substrate to nonphosphorylating preparations has been recorded by a number of workers and is generally accepted to be a rapid reaction. Polarographic measurements of oxygen utilization on addition of succinate to Keilin and Hartree heart muscle preparations and spectrophotometric recordings of fumarate formation in the same system support this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 167 شماره
صفحات -
تاریخ انتشار 2016